Military Strategy Magazine - Volume 7, Issue 4

Volume 7, Issue 4, Winter 2022 5 into contact. No less than 6 U.S. battleships (Massachusetts, Indiana, New Jersey, South Dakota, Wisconsin and Missouri), 7 cruisers (including the brand new battle cruisers Alaska and Guam) and 21 destroyers were dispatched to meet Yamato just in case the aviators failed to find their target. Although the demise of the Yamato in such a lopsided victory was welcome from the American perspective, it was not preordained. The Yamato was the superweapon of its day, it threatened the U.S. battle line and even the outcome of the anticipated climatic naval battle for mastery of the Pacific. U.S. planners recognized Yamato as a problem and they subjected that problem to mathematical “analysis” to understand its nature and to devise cost-effective ways to mitigate the threat. U.S. Navy planners worked to find a solution to this Japanese superweapon “left of battle,” so to speak, long before Yamato sailed for Okinawa. Today, everything from hypersonic vehicles, cyber intrusions, autonomous vehicles, and 5G networks are identified as emerging superweapons that threaten the U.S. Navy’s prospects in the western Pacific. Nevertheless, as these various technologies wax and wane along the Gartner hype cycle, evaluations of potential applications, net assessments, and mathematically informed analysis rarely inform debate.[i] What follows is not just a call for today’s Navy to “think about things more,” but to instead employ the full panoply of mathematical analysis, optimization techniques, systems analysis, modelling and simulation, and even qualitative assessment to better understand how to employ weapons based on new technologies and their potential impact on some future conflict. A look back on the Yamato problem can help us understand why today’s officers will find it difficult to assess the new technologies that are touted as the source of the next superweapon at sea. Few would disagree that officers need to embrace a longstanding naval tradition by using analysis now to win the next battle, thereby bolstering deterrence and reducing the likelihood of war in the future. What is less understood is that when it comes to assessing new technologies, analysis appears less compelling “left of battle,” that is, before wartime experience resolves questions about weapons based on novel technologies. Sizing Up Yamato Although the Yamato’s 18-inch guns could loft a shell about 46,000 yards, a bit more than the 42,000-yard range of the 16-inch guns deployed on the newest Iowa-class battleships that were entering the U.S. fleet at the start of World War II, effective engagements at sea would occur at less than maximum range. Both types of battleships could also fire a salvo at about thirty-second intervals. The Yamato, however, did possess a significant edge in the overall weight of its broadside (about 29,000 pounds) to the Iowa (24,000 pounds), giving the Yamato a distinct twenty percent advantage in a “slugging match.” Yamato’s thicker armor amplified that advantage. U.S. planners first seemed to gravitate towards a “more of the same” solution to compensate for the lighter broadside and armor of their capital ships. Japanese ship construction could not compete with American industry – the Japanese would only manage to launch the Yamato and her sister ship Musachi by the end of the war. By planning for the construction of six Iowa-class battleships, the United States might be able to avoid a “fair fight,” so to speak, so that multiple Iowa battleships could engage a single Yamato. A 3:1 engagement would then subject a Yamato to nearly 150,000 pounds of shot each minute, while each Iowa would only be subjected to about 19,000 pounds of ordnance in return. Ceteris paribus, U.S. battleships would quickly win such an encounter. In a sense, what analysis revealed was that quantity has a quality all its own; building a larger number of relatively inferior weapons can sometimes defeat a smaller number of superior weapons. Because it was impossible to guarantee that the United States would enjoy that firepower advantage when an encounter occurred, naval architects went back to the drawing board to see if they could design a U.S. battleship that would be superior to the Yamato. A more sophisticated analysis went into the design of the new Montana-class battleship, which would be built on hulls designed for the Iowa-class. Instead of attempting to increase the size of the big guns on the Montana to exceed the 18-inch cannon on the Yamato, U.S. naval architects increased the number of 16-inch guns on the Montana to twelve, up from the nine 16-inch guns carried by the Iowa-class. As a result, the Montana’s broadside would enjoy about a ten percent advantage (32,400 pound vs. 29,000) in throw weight over the Yamato. More importantly, its twelve cannons would also possess a greater probability of actually hitting the target than Yamato’s nine larger guns. If each round had about a 10% chance of hitting a target, then the likelihood of a Montana achieving three or more hits with a 12-shot salvo was 11%, while Yamato had only a 5% chance of achieving three or more hits with a 9 shot salvo. Roughly speaking, a Montana could score three or more hits for every 2 or more hits scored by a Yamato, giving the Montana about a 20% advantage in firepower, the same advantage enjoyed by the Yamato over the Iowa. The left of battle analysis behind the Montana revealed that increasing the firepower of existing platforms – an evolutionary improvement -- was a costeffective way of besting the opponent’s superweapon. Data gleaned from the first six months of World War II combat in the Pacific, however, led the Navy to adopt a far more radical response to the Yamato. Because of the unusual circumstances surrounding the Japanese victory at Pearl Harbor, some Navy strategists wanted to reserve judgment on the future of the battleship in the face of obviouslyeffective carrier aviation.[ii] Following the carrierdominated battles of the Coral Sea and Midway, however, Winning Left of Battle: The Role of Analysis James J. Wirtz

RkJQdWJsaXNoZXIy OTU5