Military Strategy Magazine - Volume 7, Issue 4

Volume 7, Issue 4, Winter 2022 6 it was no longer possible to avoid that judgment. What the air battles demonstrated was that the aircraft carrier could engage a battleship literally hundreds of miles before the battleship could be brought into effective range (about 20 miles with radar guidance and somewhat less than that with ship-based optics). The important measure of effectiveness was no longer weight of fire, or speed of fire, or even the probability of scoring a hit, it was the range at which a target could be engaged. By broadening their analytical aperture to include aircraft, officers recognized that an asymmetrical weapon had transformed the superweapon Yamato into a target years before the first Montana would have plied the world’s oceans. Battleships would no longer be the dominant weapon in naval warfare. It might be tempting to attribute this apparent technological myopia to the battle between battleship admirals of the socalled “gun club” and pioneering naval aviators. That would be a misreading of the Yamato story – by working a series of Fleet Problems during the 1920s and 1930s, naval aviators began to gain an accurate perception of the potential of the aircraft carrier. Nevertheless, as the work of the naval historian Craig Felker suggests, these promising findings were undermined by concerns about the frailty of aircraft and the ability to conduct effective aircraft operations in an unforgiving wartime environment at sea.[iii] Indeed, the death of Admiral William A. Moffett, the most effective pioneer of the naval aviation, in the crash of the airship Akron in 1933 did little to undermine the perception that aircraftwere too unreliable to be counted on inwar.[iv]What is especially revealing is how many issues the Navy actually worked out in the interwar period – carrier operations, amphibious landing, underway refueling – without having a fundamental impact on procurement strategies that would shift the balance between guns and aircraft in the Fleet.[v] By July 1942, the Navy revised its priorities, placing submarine construction first and relegating battleship construction to the back burner as sixth in priority.[vi] In a move accelerated to the speed of wartime, the U.S. Navy ended its battleship program by July 1943, cancelling plans to build Montana-class battleships.[vii] The end of the battleship era had come, an end sealed by the fate of the Yamato two years later. Where is the Analysis? Today the Navy faces a technological tsunami. A growing list of potentially disruptive technologies, if not potential superweapons, compete for consideration. Artificial intelligence, the emergence of 5G networks, additive manufacturing, quantum science, new energetics, synthetic biology, and new types of “systems of systems” in naval warfare appear to be within reach of friend and foe alike. The Navy is also working hard at innovation. Nevertheless, Navy planners at times appear overwhelmed by these emerging technological opportunities and seem unsure about which technologies and operational concepts to pursue. Motivating this concern about new technologies and the slow pace of innovation is the fear that one of these new technologies might constitute a disruptive approach to naval warfare, an asymmetric response to the carrierdominated U.S. Navy. Ironically, despite all of the technological rhetoric, we face a situation today not entirely dissimilar to the one facing the U.S. Navy on the eve of WWII. Recent advances in antiaccess and area-denial technologies, strategies, operations and tactics by emerging peer-competitors largely have one target in mind, the carrier battle groups of the U.S. Navy. Admittedly, many of these advances are more formidable on paper than in reality, but these tactical threats can have operational and strategic consequences. From an institutional perspective, these developments also threaten the bureaucratic dominance of the aviation community, much in the same way the interests of battleship admirals were threatened by both the Yamato and aviation in the interwar years. Because the U.S. Navy’s current array of high-performance aircraft and multi-mission warships are so expensive, the qualitative edge produced by quantity is likely to be enjoyed by our peer-competitors. In other words, the “more of the same” response embodied in the Iowa-class building program is not a promising option for the today’s Navy. Increasing the firepower of individual platforms might be a viable solution to the anti-access and area-denial problem, but without analysis to identify and mathematically model specific threats, it is impossible to knowwhat improvements are likely to make a difference in combat. Solutions might be available, but someone has to provide a net assessment of the problem as a starting point. This leads to the possibility of an asymmetric, disruptive response to the anti-access and area-denial problem. Nevertheless, the history of disruptive technology and the battleship is not reassuring – asymmetric, disruptive technologies are difficult to assess before they are demonstrated in combat. When the Yamato, Iowa and Montana were designed, for instance, the offensive potential of carrier aviation was a matter of some conjecture. The Navy’s first carrier monoplane, the Brewster Buffalo (F2A), still only existed in artists’ renderings and it remained an open question if aircraft possessed the range, payload, and structural integrity for sustained combat. By the early 1930s, aviationenthusiasts believed that the pulsedfirepowerof the aircraft carrier could outrange and outgun battleships, but their models and analysis appeared to be largely conjecture to their more battleship-minded colleagues. Unlike the “left of battle” analysis that influenced the development of the Iowa-class and the Montana-class, the decision to abandon the battleship in favor of the aircraft carrier occurred “right of battle,” after the definitive evidence gathered at the Coral Sea and Midway was subject to analysis. Today, waiting for a “proof of concept” demonstration of one of the host of Winning Left of Battle: The Role of Analysis James J. Wirtz

RkJQdWJsaXNoZXIy OTU5